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DIRECT REACTION CALCULATION 

By W. R. Gibbs, V. A. Madsen, J. A. Miller, 
W. Tobocman, E. C. Cox, and L. Mowry 

Lewis Research Center 

SUMMARY 

This report presents the program called DRC. It is an automatic computer 
program in the FORTRAN language for the calculation of transition amplitudes and 
cross sections on the basis of the distorted-wave Born approximation (DWBA). 
The incident- and the outgoing-channel wave functions used in the DWBA are de- 
scriptive of elastic scattering by an optical potential. DRC may be used to 
calculate the differential cross section for elastic scattering in both incident 
and outgoing channels. The following types of nuclear reactions can be treated 
by DRC: (1) inelastic scattering, (2) knock-out, (3) projectile stripping, and 
(4) target stripping. 

INTRODUCTION 

This report presents the program called DRC (direct reaction calculation). 
It is an automatic computer program in the FORTRAN language for the calculation 
of transition amplitudes and cross sections on the basis of the distorted-wave 
Born approximation (DWBA). The incident- and the outgoing-channel wave functions 
used in the DWBA are descriptive of elastic scattering by an optical potential. 
DRC may be used to calculate the differential cross section for elastic scatter- 
ing in both incident and outgoing channels. The following types of nuclear re- 
actions can be treated by DRC on the basis of the zero-range interaction approx- 
imation: (1) inelastic scattering, (2) knock-out, (3) projectile stripping, and 
(4) target stripping. For inelastic scattering there are two alternatives to 
the zero-range interaction approximation. The three inelastic scattering options 
are (1) single-particle excitation via a zero-range interaction, (2) single- 
particle excitation via a Yukawa interaction, and (3) collective excitation via 
a diffuse surface interaction. 

BASIC MATHEMATICAL EQUATIONS 

The DWBA formalism on which DRC is based will now be outlined. Let D be 
the incident particle, I the target nucleus, P the outgoing particle, and F 
the residual nucleus (sketch a). 

Incident channel ----* --- *--- 

Outgoing channel --m-A -- 
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According to the DWBA, the transition amplitude for this process is 

where Og)(%) is the wave function for the relative motion of particles 

A and-B when the interaction between the two particles is the optical poten- 
tial V q (ref. 1). When the superscript is +(-), the incoming (outgoing) part 

of $(K) i s asymptotically equal to the incoming (outgoing) part of 

expiK' GA-fB). When expanded in spherical harmonics, 

Ok'(?) = 45( c i'~(~)*~(~)~(K,r) 

bm 

where 

+ + r=r A - ;tB 

The equation for ,(-I is obtained by replacing T by its complex conjugate. 
The wave function for the internal degrees of freedom of particle A is 'pA, 
while V PF is the potential energy of interaction of particles P and F. 

For inelastic scattering reactions P = D and F = I. When single- 
particle excitation is involved, I = C + N = F where C is the core and N is 
the bound particle. The transition amplitude is then 

where 

FzJjjJ = 
hJ c 

;$F~JjjJ(.LZ)P~+cos 0) 

L, 2 

-t “, 
dr r2fy(KP,r)fy1(KD,r)gh I2 JJ (I-) 



- 

= 4(2c + 1)(2f + 1) W(abde;cf) 

and where 

(JlJ2ml%( jlj2JM) vector addition coefficient 

W(abde;cf) Racah coefficient 

Jqx) associated Legendre polynomial 

The form of gA(r) depends on which option is chosen for the inelastic scatter- 
ing interaction. If 

V PF 
- Tm = 45c v 

a3 O 
8Cp - 5N) 

then 

If 

v. e 
-al 3,-it,\ 

V PF - VPF = 
cqf, - ;Nl 

then 

where JF?F c J#N JIMI Aj 
(PF = (J-$vl JIjJ#$) (JNh”NcII J$-jn)yl*h(“)‘~N ‘PI % Cd 

r<= r if r < rl 

=r 1 
if rl< 1: 



and where 

j+> spherical Bessel function 

h?)(x) spherical Hankel function of first kind 

MA massof A 

The expressions corresponding to inelastic scattering by collective excita- 
tion are similar to those given previously except that the superscripts E'jj' 
are absent and the expressions for gh and Qh are modified. It is assumed 
that the incident particle D does not interact with a single particle N but 
instead interacts with a collective degree of freedom of the target nucleus 
I = F. Let 

and use the relation 

It follows that gh = VA. In this calculation 

The amplitude for inelastic scattering by collective excitation then differs 
from that for single-particle excitation only in that QT'jj' is replaced by 

% = (hJIoMIIWIJ$!F) 

In the previous discussion the contribution to inelastic scattering due to 
purely nuclear interactions was considered. There will also be a contribution 
arising from the Coulomb interaction. This may be introduced into the expres- 
sions by adding to the kernel gh a second term of the form 

MI i$(r)=& - 
3 * ()J 2h MI 

Mc 0 
elrlPFI -rl c >[ 

h -h-l 

MC 
r<r> - $Of(r) 1 



where 

f(r) = 
r ' RNI 

RNI - r2/2 R& r< RN1 

and p(r) is the charge density operator. For single-particle excitation, 

h 
'FI 

For collective excitation, 

Finally, the program allows the nuclear collective interaction kernel to be 
given an alternative form to that of vh, namely, 

drl rfJh(iarr<)q)(iar,) 

The cross section for inelastic scattering is 



u(e) = 
MPPMDI Kp 25~ + 1 

(2fi2) 
2 q 2JI + 1 

h YP 

for single-particle excitation and 

for collective excitation. 
calculates the amplitude 

The reduced mass of A and B is MAR. The DRC 

and the cross section 

a(e) MPF%I !P 2JF + ' t 

@33i2) 
2T 2JI + 1 

c 
2h + 1 

P 

The fUr&iOnS (PI and 'pF used are normalized so that 

f 

co 
1 = dr r21p(r)2 

0 

Besides the DWBA amplitude and cross section described previously, the DRC 
calculates a second set of such quantities according to the cutoff DWBA. The 
cutoff DWBA differs from the DWBA only in that the kernel g?,(r) is set equal 
to zero for r smaller than a cutoff radius RC. 

For knock-out reactions, I = C + P and F = C + D, where C is the core. 
The interation VpF - TPF = VpD + Vpc - TPF is approximated by 

V 
PD 

= (45)/u3)"(?p - YD,. The transition amplitude then becomes 
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where 

giJjjf = 
c 

;$ FEJjjJ (L2)PLv (COB 6) I I 
ti 

/ 

03 
FEJjj’ (Lz) = 

0 
dr r2 fF(KP, 2 r) fT'(K,r)g='jj'(r) 

gmJJ (r) = !Zf$ (!Zr q$'j' (2 r) cpij (2 r) 

c 

-- 

mw = 
%ab (-1) 

JC-J,-J,+j-j*+Z-2l+b-c 
(hi00 1 Aiif 0 ) 

C 

'JDit jl 

Jpc b . > 

X 
(2b + 1)(2c + 1)(2i + 1)(2JI + 1) 

4x(22* + 1)(2Jc + 1)(2Jp + 1) 

The cross section is 

a(e) = MID%F Kp (2Jp + 1)(2JF + 1) 

@J732) 
2 r (2JD + 1)(2JI + 1) 

The DRC calculates the amplitude 

c ii’jjl FAcr 

ii'jj 
'?mb 

ii'jjt 
(2a + 1)(2b + 1) 

* 2 
! 

and the cross section 
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a m(e) = MlD%P KP @JP + 1)(2$ + 1) 
(anK2l2 il;; (2i5J + 1)@J, + 1) 7, 

FZWj’ 
hcc I 2 

For projectile stripping reactions D = N + P and F = I + N, where N is 
the exchanged particle. The interaction VPF - TPF = VpN + VpI - vPF is approx- 
imated by VPN. The interact%on VpN is taken to have zero range so that 

where ER is the binding energy of D. The transition amplitude then becomes 

where 

gj(r) = -W cphj(r) 
A NPF 

The cross section is 

c I AlI 2 
(s(e> = MDI"PF KP 2JF + 1 F 

(2fi2) 
2 g (2J, -I- I)(+ + 1) 2A + 1 

Jk 

The DRC calculates the amplitude 

Bh = ip+IpI+A FL 
and the cross section 
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a(Q) = %I"PF KP 25~ + 1 

(2fi2> 
2 5 (2JI + 1)(2JN + 1) 

c 
2h + 1 

v 

For target stripping reactions I identifies the incident projectile and 
D = P + N identifies the target nucleus. The residual nucleus is F = I + N 
and the outcoming particle is P. The expressions for the transition amplitude 
and cross section are then identical to those for projectile stripping except 
that XD ImSt be replaced by -2,. Thus, 

%P(KI@t = %P(-%+)p 

and 

a(e), = U(II - e)p 

where the subscripts t and p denote target and projectile stripping, respec- 
tively. 
Bk 

The DRC uses these relations to calculate the transition amplitude 
and differential cross section a(e) for target stripping from the corre- 

sponding quantities for projectile stripping. 

The DRC consists of a set of subprograms that run sequentially. These pro- 
grams make use of a group of subroutines and function subprograms. For conven- 
ience in compilation, the subprograms are arranged into four subsets called 
links. 

LIST OF SUBPROGRAMS 

Main Program 

Link 1 

0 Input data reduction 

IZS Surface-interaction form factor 

IZA Bound-state wave functions 

IZB Bound-states multiplication 

IZC Bound-states kernel 

Link 2 

2vD Kinetic energy for incident channel 

2vP Kinetic energy for outgoing channel 
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2xD Radial wave function for incident channel 

2xP Radial wave function for outgoing channel 

Link 3 

3B Coulomb scattering amplitudes 

3A Nuclear scattering amplitudes 

4 Radial integrals 

5 Coefficients of Legendre polynomial expansion 

Link 4 

6 Convergence test and total cross section 

7A Direct-reaction amplitudes 

7B Direct-reaction cross sections 

8 Elastic scattering cross sections 

sz 

AJH 

ONE z 

TWO PD 

TWOAB 

Subroutines and Function Subprograms 

Surface form factor 

Spherical Bessel or Hankel function 

Bound-state wave function 

Kinetic energy (Saxon well + Coulomb well) 

Radial wave function 

THREEA Nuclear scattering amplitudes 

THREEB 

FOUR 

LP 

GAMMA 

FCTRL 

PLOT 

PLOTMY 

10 

Coulomb scattering amplitude 

Radial integral 

Associated Legendre polynomials 

Gamma coefficient 

Factorial function 

Plot graph 

Plot graph II 



VBEST 

INTRP 

Harmonic oscillator potential depth 

Interpolation 

INPUT DECK 

The information to be entered on each card of the input deck and the format 
to be used are given by the following list: 

(1) Information to identify calculation (80H) 

(2) IRSACH 

(3) ZI 

(4) JI 

(5) m 

(6) ZN 

(7) L1 

(8) ED 

(9) LAM 

(10) VD 

(11) m 

(l-2) lJT? 

(13) 2fF 

(14) RS 

(15) vN1 

(16) VN2 

(17) AJl 

(18) DELTA0 

(19) AN6 

(20) wl 

LIL IJ?AR 

m ZD 

n JD 

Ml? MD 

m MN 

L2 Nl 

Q EB 

RC R2 

WD RD 

WP RP 

AS 

RN1 

RN2 

AJ2 

AN0 

AN8 

w2 

vo 

BNl 

BN2 

DVN 

AN2 

AN9 

w3 

(21-1) XST THETA0 

. . . 

. . . 

. . . 

(2LNOT) XST THETA0 

NOLD IPPAR 

ZP 

m 

Ml? 

YS 

N2 

m 

M 

AD 

YL 

AI? 

BS 

ALSHA 

CSl 

CSE 

AN3 

AN5 

AN10 

w4 

DELTA NOT 

. . 

. . 

. . 

DELTA NOT 

IWRTZ (614) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(lP4E 15.8) 

(3E 15.8, I 10) 

. 

. 

. 

(33 15.8, I 10) 
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(22) Information to identify plot (12 A6) 

(23) NE THETE DELTE (15, 2E 15.8) 

If LPAR # 0 or if AN5 f 0, card 23 should be left out. 

The quantities just listed are to be interpreted as follows: 

IREACN = IP 

IR = 1 

IP = 2 

= 3 

= 4 

LIL = LI 

LI = 0 

= 1 

= 2 

=3 

LPAR = Lp 

Lp=o 

= 1 

NOLD = N 
D 

ND = 1 

= 2 

= 3 

IPPAR = Ip 

Ip = 0 

>o 

CO 

determines type of reaction to be calculated 

inelastic scattering 

knock-out 

projectile stripping 

target stripping 

determines form of interaction 

surface interaction 

Yukawa well interaction 

zero-range interaction 

Yukawa well-surface interaction 

allows continuum wave function part of calculation to be omitted 

calculation proceeds in usual way 

program does not calculate continuum radial wave functions but 
uses instead those written on tape by a previous calculation 

determines type of potential well used to calculate bound-state 
wave functions 

Saxon well 

truncated harmonic oscillator well 

harmonic oscillator well 

allows transition amplitudes to be read out 

transition amplitudes are printed out 

transition amplitudes are printed out and punched out on cards 

transition amplitudes are not read out 

12 



jIwlRTz= Iwz 

ZI = ZI 

m = ZF 

ZD = ZD 

ZP = zp 

JI = JI 

JT = JP 

JD = JD 

J-P = Jp 

MI = MI 

MF=M-!$ 

MD = MD 

MP = Mp 

if IW # 0 bound-state wave functions and potential form fac- 
tors are printed out 

charge of target nucleus 

charge of residual nucleus 

charge of incident particle 

charge of outgoing particle 

spin of target nucleus 

spin of residual nucleus 

spin of incident particle 

spin of outgoing particle 

mass of target nucleus 

mass of residual particle 

mass of incident particle 

mass of outgoing particle 

If IP = 4, then I identifies incident particle and D identifies target 
nucleus instead of what is shown previously. 

ZN = ZN charge of bound particle 

JN = JN spin of bound particle 

MN = MN mass of bound particle 

YS = Ys determines verticle scale of graphical output 

Li = i orbital angular momentum of particle bound in target nucleus 

u=2 orbital angular momentum of particle bound in residual nucleus 

Nl = Ti radial quantum number of particle in target nucleus, number of 
nodes of radial wave function plus one 

N2 = n1 radial quantum number of particle in residual nucleus 

ED=% laboratory energy of incident particle 

Q=Q Q-value of reaction, p ositive for exothermic reactions 

13 



EB = EB 

QB = QB 

LAM=A 

RC = RC 

R2 = R2 

M=m 

V-D = VD 

m = w, 

x!!.D = XaD 

YL = YL 

VP = vp 

we = wp 

RP = Rp 

AP = ap 

XP = xp 

XRP = nip 

XAP = Xap 

binding energy of target nucleus or incident particle, separation 
energy 

binding energy of residual nucleus minus EB 

angular momenum transfer 

cutoff radius 

interval doubling radius; R2 should be set so that it. is about 
equal to RNl and RN2 

Saxon well flattening parameter 

depth of real part of optical potential for incident channel, 
negative channel, negative for attractive potential 

depth of imaginary part of optical potential for incident channel, 
negative for absorptive potential 

radius of Saxon well for incident channel 

diffuseness of optical potential for incident channel 

strength of surface absorption potential for incident channel, 
negative for absorptive potential 

radius of surface absorption potential for incident channel 

diffuseness of surface absorption potential for incident channel 

determines whether cross section (YL = 0) or logarithm of the 
cross section (YL f 0) appears in graphical output 

depth of real part of optical potential for outgoing channel, 
negative for attractive potential 

depth of Imaginary part of optical potential for outgoing channel, 
negative for absorptive potential 

radius of Saxon well for outgoing channel 

diffuseness of optical potential for outgoing channel 

strength of surface absorption potential for outgoing channel, 
negative for absorptive potential 

radius of surface absorption potential for outgoing channel 

diffuseness of surface absorption potential for outgoing channel 

14 



BS = BS 

RS = RS 

AS = as 

vo = v. 

ALPHA=a 

VNI =v 
NI 

RN1 = RN1 

BNl = B 
Nl 

CSl= csl 

VN2 = VN2 

RN2 = RN2 

BN2 = BN2 

cs2 = cs2 

AJl = j, 

AJ2 = j, 

DVN = DVN 

AN3 = N3 

DELTA0 = E. 

AN0 = No 

AN2 = N2 

AN5 = N5 

AN6 = N6 

AN8 = N8 

strength of Coulomb interaction 

radius of surface-interaction form factor 

diffuseness of surface-interaction form factor 

strength of inelastic scattering interaction, negative for 
attractive interaction 

range of inelastic scattering interaction 

depth estimate of potential well for initial bound state, posi- 
tive for attractive potential 

radius of potential well for initial bound state 

shape parameter for potential well for initial bound state 

spin-orbit parameter for potential well for initial bound state 

depth estimate of potential well for final bound state 

radius of potential well for final bound state 

shape parameter for potential well for final bound state 

spin-orbit parameter for potential well for final bound state 

total angular momentum of initial bound particle 

total angular momentum of final bound particle 

increment in potential depth used in search for correct bound- 
state potential well depth 

convergence criterion used in well-depth search 

mesh interval size 

determines transition point in radial wave-function calculation 

convergence criterion for asymptotic series used in radial wave- 
function calculation 

elastic cross sections will not be read out if N5 # 0 

convergence criterion for power series used in radial wave- 
function calculation 

criterion for setting upper limit for radial integrals 

15 



AN9 = Ng criterion for setting Saxon form factor equal to zero 

ANlO = Nlo maximum number of terms to be allowed in asymptotic series 

wl = Wl criterion for determining number of partial waves to be distorted 
in incident channel 

w-2 = w2 

w3 = w3 

w3 = 0 

w3 i 0 

criterion for determining number of partial waves to be distorted 
in outgoing channel 

allows bound-state kernel part of calculation to be omitted 

calculation proceeds in usual way 

calculation of bound-state kernel in link 1 is omitted, kernel is 

w4 = w4 

XST = uM 

THETAO= 

placed in memory by previous calculation used 

criterion for determining total number of partial waves used 

experimental differential cross section 

DELTA =A NOT = NT 

If A = 0, there should be NT cards bearing numbers identified by uEx, 8, A, 
and NT. The quantities A and NT need be present only on the first of this 
group of cards. The quantities uEX and 8 will be different on each card. 
They will represent the observed differential cross section and the center of 
mass angle at which it is observed. The program will calculate a theoretical 
differential cross section at each of these angles. If A # 0, there should be 
only one card bearing numbers identified by urn, 8, A, and NT. In this case 
uEX is ignored, and the program calculates the direct-reaction differential 
cross section at the center of mass angles 8, 6 + n, 8 + za, . . .,e+ (NT-1)A: 

NE = NE TmE = eE DELTE = AE 

The elastic differential cross sections will be calculated at the center of mass 
angles QE, eE + + QE + 2% . . ., BE + (NE - l)+. There should be no more 
than 100 points in any of these angular distributions. The input information 
should be in the following units: 

angle degrees 

angular momentum units of 35 

charge units of charge of the positron 

differential cross section millibarns per steradian 

energy million electron volts (Mev) 

16 



length fermis 

mass atomic mass units 

DESCRIPTION OF SUBPROGRAMS 

Program 0 - Input Data Reduction 

Program 0 reads part of the input information and prepares it for use in 
subsequent parts of the calculation. 

The first card of the input deck contains whatever information it is de- 
sired to use to identify the calculation. The contents of the first 20 input 
cards are printed out to help identify the output. The contents 'of input cards 
2 to 19 appear under the heading INPUT TO PART ZERO. Then under the heading 
OUTPUT FROM PART ZERO the following numbers are printed out: 

ED = ED 

l/2 
KD = KD = (2M2=ED/MDE2) 

EP = Ep = [MIS + (MI + ~,Ql/I'$, 

JCP = Kp = (2<pEp,MP52)1'2 

A.la!AP = ?Jp = zpz.&pc/K$i 

MFp = %p = $Mp/($ + Mp, 

ET?1 = EN1 = Eg 

AETANI = ?'jNI = ZN(zI - ZN)MNCc&,# h = 1,2 

IR = 3,4 =o 

17 



Ml = Ml = MN(MI - MN)/MI = 

EN2 = EN2 = EB + QB 

112 
m2 = %2 = (23s2b2 1 

MNC 

AEnxN2=Tj 
N2 

= ZN(ZI - 

= ZD(ZI - ZJ&X/K& 

m = Mz = MN(MI - J$#$ 

= S($ - y))/% 

= !l?ld% 

plEPS = E = "o/cKp + $1 

AEPN = cN 

AEPD = cD 

AEPP = EP 

RO = R. = 

RC = RC = 

RZ = R2 = 

= cMI/(MI - %) 

= EJqMI 

=E 

= EMpI 

= E 

= aM /M 
IF 

?R =l 

1;(=2 

s = 3,4 

s = 1,2 

IR = 3,4 

IR = 1,2 

FR = 3,4 

IR 
= 1,3,4 

12 
R= 

RS - 2cN + N8as 

RC 

R2 

I =l 
R 

IR = 2 

i& = 3,4 

LI = 1,2 

L =0,3 

AIPE = P = 1 + emm 

18 



RDB = ?$ = RD - aD ln(1 + 2eem) 

RPBziiP=%-a p ln(1 + 2eem) 

ROD = PD = % - m% 

ROP=p =fi: -ma 
P P P 

SD = SD = Ma?crsp, sp I 

= ED + aD(0.69315 + 2.302585 Ng) 

SW 
D = T -t- XaD(0.69315 + 2.302585 Ng) 

SP = sp = Ma+), p1 

s(1) 
P 

= gp + a,(O.69315 + 2.302585 Ng) 

d2) = XRp + x”p( P 0.69315 + 2.302585 Ng) 

COD = COD = kxp@JrrlD) - ll}1/2 

cop = coP = bxp(mJp) - 11 l/2 

VI = VI = [45r(2h + 1)]1/2/'hs 
Ti = 1, LI = 0 

= 1.5[4r((2h + 1)11/2/~~ 33 = 1, LI = 1 

= (4~)~/~(2A + ,)1/2 Vo@$&,a3M~ 

= (4fl)3'2(2h + 1)1/2 VoM3F/KpKDa3M3 
C 

= -[32x(2h + l)~/2/K&]1/2(~M;) 

x rs2@$ + MP)/2MNMJ3/4 

5 = 1, LI = 2 

k = 2 

% = 3,4 
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AETA = 51 = 1-/~(2h + 1)-l IR = 1 

= ‘-I~@J~+ l,/@JD + 1) IR = 2 

= v0(2h + l)-'(2JN + 1)-l 5 = 3,4 

= 10 MIDMFp(2fi2)-" KpKnl'2JF + 1)(2JI + 1) 
-1 

TO 

MC = MC = MI - MN IR = 1 

=%-% IR=2 

=%-% IR = 3,4 

NR2 = n2 = R2/eN 

NRO = no = (R2/eN) + (R. - R )/2e 
2 N 

NRC = nC = (RC/EN) + (RC - R2 + ]RC - R21 )/4eN 

LAM=h 

LDD = LDD = KDRD + Wl 

LDP = LDP = KpRp + W2 

LCD = LCD = Lcp + A 

LCP = LCP = m(LDD, sp, KpRo + W4) 

where 

52 = 41.826134 

A-1 a = 7.2973254><10-3 

c/n = 4.7195563 

Limitations inherent in the program impose certain restrictions on some of 
these numbers. It is necessary that no be less than 500. If no is greater 
than 499, NO TOO LARGE is printed out, no is set equal to 499, and the calcula- 
tion continues. It is also necessary that LDD, LDp, LCD, and Lcp each be less 
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than 50 and A be less than 6. 

LDP < LcP* 
Also, it iS necessary that LDD < LCD and 

Program IZS - Surface-Interaction Form Factor 

If I+ # 0,3, program IZS is skipped and control is shifted to program IZA. 
Program IZS calls subroutine SZ to calculate the function 

ZDEL(n) = R V a so~l[2+~(‘;sRs)+erp~a~r~-1 

where 

r = r-x N n<n - 2 

= R2 + (n - n2)2eN n>n 2 

which will be used as the bound-state kernel in program 4. After ZDEL is calcu- 
lated in this manner, control is shifted to program 2VD. 

The description of IZS applies only if LI # 3 and BS = 0. If LI = 0 

and BS # 0, the program calculates ZDEL as just described and in addition cal- 
culat es 

ZC = RSagl [2+exp(';,":,+exp~a~r,jJm1 

and shifts control to the middle of program IZB. If LI = 3, ZDEL is not calcu- 
lated, ZC is calculated as described, and control is shifted to the middle of 
program IZB. When LI = 0, IZB and IZC will add a Coulomb term to the kernel 
ZDEL. When LI = 3, IZB and IZC will calculate both the nuclear and the Coulomb 
contributions to the kernel. 

Program IZA - Bound-State Wave Functions 

Program IZA uses subroutine ONE Z to calculate the radial wave functions of 
the bound particles. If LI = 1, the bound-state wave functions are calculated 

with a mesh size of IE 
3 N 

instead of EN so that they may be folded together 

with the spherical Bessel functions in program IZC. If IR = 1 or 2, the pro- 
gram calculates two bound-state wave functions: 
:, and 

AZ(n) with parameters 7, T~I, 

%l and ZB(n) with parameters iI, qN2, ;I, and s2. If IR=3 
or 4, the program only calculates ZB(n). 
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Program IZB - Bound-State Multiplication 

IT Ix= 3 or 4 and LI f 0,3, the function ZDEL(n) is set equal to 
m(n)j if IB = 1 or 2 and LI = 2, then ZDEL(n) is set equal to ZA(n) l ZB(n); 
if IB = 1 and LI = 1, then ZC = ZA * ZB; and if IR = 1 and LI = 3, then 
ZC is provided by program IZS. These ZC's are used to calculate the nuclear 
kernel. If IR = 1 and BS f 0, then a ZC will be provided for the calcula- 
tion of the Coulomb kernel for all four values of LI. 

When the nuclear kernel is being calculated, IZB computes 

ZAl(n) = ZC(n)jh(iar) t even A 
odd A 

,7X.2(n) = ZC(n)q)(icLr) i even h 
odd A 

where 

r = ne + 0.5(n - n2 + In - n2])e 

(1) Here jh is the spherical Bessel function and hh is the spherical Hankel 
function of the first kind. These functions are provided by subroutine AJH. 
When the Coulomb kernel is being calculated, IZB computes 

ZAl(n) = ZC(n)rh 

ZA2(n) = ZC(n)r-'-' 

Program IZC - Bound-State Kernel 

The bound-state kernel is made up of a nuclear part and a Coulomb part. 
The nuclear part is calculated to be 

%(n) = -4flVo (sTlA(far) lw dq r$AZ(nl) + hp)(iar) 6' drl r$XL(nlj 

where 

r = ns + 0.5(n - n2 + In - n21)e 

'1 = nle + 0.5(nl - n2 + In1 - n21)e 

The Coulomb part is calculated to be 
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BC(n) = BS MI 

()[ 

2A+ 
3 rh 

s 

RO 
drlrFZA2(nl) + r -A-l 

r 

/ 

33 
- f$of(r) el +Unl) 

0 
i 

where f(r) is as defined in the IRTRODUCTION. When LI = 0, BN is provided by 
IZS, and when LI = 2, RR is provided by IZB. Otherwise BN is calculated as 
shown previously. The quantity BC is always calculated as shown previously. 
Finally, ZDEL = RN -t- BC is the total bound-state kernel. If BS # 0, the pro- 
gram points out the multipole moment 

where h oFl. is as defined in the INTRODUCTION. 

Program 2VD - Kinetic Energy in Incident Channel 

If Lp = 1, control is transferred to program 4, while if Lp = 0, the ki- 
netic energy in the incident channel is evaluated by using subroutine TWO PD. 
The quantities evaluated are 

A2 
e ID X (real part of kinetic energy) 

22 M ID W(n) = -- 
6 +I2 

X (imaginary part of kinetic energy) 

z2 MID VC(n) = - - 
6 ?I2 

X (kinetic energy for Coulomb scattering) 

2=E D n2 > n 

= 2ED n>n 2 
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Program 2VP - Kinetic Energy in Outgoing Channel 

The kinetic energy in the outgoing channel is evaluated by using subroutine 
TWO PD. The quantities evaluated are 

c2 %P VA(n) = 6 - X (real part of kinetic energy) 
?i2 

e2 !FP WA(n) = - - 
6 fi2 

X (Imaginary part of kinetic energy) 

e2 %P VGA(n) = - - 
6 E2 

X (kinetic energy for Coulomb scattering) 

2 = Ep 

= 2Ep 

n2 > n 

n2 < n 

Program 2XD - Radial Wave Function for the Incident Channel 

By means of subroutine TWO AB the radial wave functions for the incident 
channel are calculated and are written on tape 4. These wave functions are 
represented here by 

ZD(L,n) = XD(L,n) + iYD(L,n) = X:(r) 

where 

r = ne D + 0.5(n - n2 + In - n21)fD 

The radial wave functions for L < LDD are calculated by using V(n) + iW(n) 
for the kinetic energy, while for 
used. 

LCD >, L > LDD the kinetic energy VC(n) is 

Program 2XP - Radial Wave Function for Outgoing Channel 

By means of subroutine TWO AB the radial wave functions for the outgoing 
channel are calculated and are written on tape 3. These wave functions are 
represented here by 

ZP(L,n) = XP(L,n) + iYP(L,n) = xLp(r) 

where 
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r = nep + 0.5(n - n2 + In - n21)ep 

The radial wave functions for L < LbP are calculated by using VA(n) + iWA(n) 
for the kinetic energy, while for Lcp > L >, LDp the kinetic energy VGA(n) is 
used. 

Program 3B - Coulomb Scattering Amplitudes 

Subroutine THREE B is used to calculate the Coulomb phase shifts uD(L) for 
the incident channel and the Coulomb phase shifts up(L) for the outgoing chan- 
nel. 

Program 3A - Nuclear Scattering Amplitudes 

Subroutine THREE A is used to calculate the scattering amplitudes and nor- 
malization factors for the radial wave functions. For a given radial wave func- 

tion <(A = D,P), the normalization factor and the scattering amplitude 

AA ,L are determined by the requirement that 

where yL(K,r) is the Coulomb analog of the spherical Hankel function of the 
first kind. It is convenient to write 

A: = & + exp [i2cA(L)l 

where & is called the nuclear scattering amplitude and exp[i2aA(L)] is 

called the Coulomb scattering amplitude. For L > LDAJ & is set equal to 

zero and c"L is set equal to exp[iuA(L) 1. To verify the validity of this step, 
the program prints out the real and the imaginary parts of 

% hD-1 
identified 

by DISTORTION CHECK D and the real and the imaginary parts of A' identi- 
NJDp-1 

field by DISTORTION CHECK P. If AA 
N, L 

is not very small compared with 1, 
DA-l 

then LDA should be increased by increasing Wl or W2. 

Program 3A also calculates and prints out reduced widths for r = R2 and 
r= RC. The reduced width is taken to be 

reduced width = ?i2[ZDF,L(n)12/2MNCr 
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where 

r = nsN + 0.5(n - n2 + In - n21)eN 

Program 4 - Radial Integrals 

By means of subroutine FOUR the following radial integrals are evaluated: 

SO J RO 

L,2 = dr Z(r' )Xy(rf')XT(rfl' ) 

0 

/ 

RO 
s; z = 

. 
dr Z(r' )X~(r")X~(r"' ) 

where 

r = ne + 0.5(n - n2 + In - n2j)E 

Z(rl) = ZDEL(n) 

Xy(r") = ZD(2,n) 

XE(rrff) = ZP(L,n) 

R' = MCR M 
C c/ I 

IR = 1,2 

R’ = 
C MIRC'MF 

IR = 3,4 

Program 5 - Coefficients of Legendre 

The coefficients of the Legendre polynomial 

Polynomial Expansion 

expansion are calculated as 

Bk = V Cp LA IL 
c 

c;g &(-1)(L+~-z)/2 A = 0,C 
., 

1 

The quantities Pa are provided by subroutine GAMMA. 

Program 6 - Convergence Test and Total Cross Section 

First, this program calculates and prints out the quantities 
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CP and CP 

LcP C 

c GL 

preceded by the words CONVERGENCE TEST. In the previous expressions, 
A , . 

G; = 4fl 
2L + 1 

c 

jBzl'(L + ICI/ )!/(L - 1~1): A = 0,C 

p-A 

Next, the program prints out the words TOTAL CROSS SECTION followed by 

LcP LcP 
R=O s=?-j 

c & R = RC s=q 
c GE 

0 0 

The quantities S are total direct-reaction cross sections according to the 
DWBA and the cutoff DWBA, respectively. 

The convergence test is an indication of the error resulting from truncat- 
ing the angular momentum expansion after LcP + 1 terms. If the convergence 
test is not very small compared with 1, then LCp should be increased by in- 
creasing W 4' 

Program 7A - Direct-Reaction Amplitudes 

Program 7A calculates the direct-reaction amplitudes as a function of 
center of mass angle. The amplitudes are given by 

B?(B) = 
LcP 

c 
B$?L(~~~ Q) A = 0,C 

LFO 

The associated Legendre polynomials FL are provided by subroutine LP. If 

Ip = 0, the amplitudes are printed out under the heading DIRECT-REACTION AMPLI- 
TUDES. 

The real and the imaginary parts are identified as follows: 

27 



Bb 
0 

= BlP + iBl.M 

Bb = B2P + iB2M 
C 

If Ip > 0 the transition amplitudes are punched on cards as well as being 
printed out, and if Ip < 0 the transition amplitudes are not read out at all. 

Program 7B - Direct-Reaction Cross Section 

The direct-reaction differential cross section is taken to be 

o,(e) = JJ @(Q) I2 A=O,C 

p=-h 

Program 7B calculates u,(Q) and o,(8). The maximums of these two cross sec- 
tions are determined and are printed out in the following statements: 

NORMALIZATION FOR R = 0 IS 

m=[oo(EJ)] MB. PER STER. 

NORMALIZATION FOR R = (RC) IS 

max[oc(e>l MB. PER STER. 

NORMALJZATION FOR EXPI' XSTN IS 

[max(uM) 1 MB. PER STER. 

The last statement appears only if the experimental cross sections are included 
in the input data. 

Then the normalized cross section 

(J,(e) 
max[ag(G)l 

u,(e) 
m=doc(Q)l 

u,(Q) 
max[uM(8)l 

and the momentum transfer 

2KPKD cos e 

are printed out. The three normalized cross sections are also displayed on a 
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graphical plot. 

Program 8 - Elastic Scattering Cross Sections 

If N5 # 0 the calculation ends with program 7. The differential cross 
section for elastic scattering is calculated for the incident channel and the 
outgoing channel by program 8 if N5 = 0. The elastic cross section for the in- 
cident channel is 

-lT (g - l.PL(cos @)I" 

(2iK)-%&PL(cos @) I 2 

The Coulomb elastic cross section for the incident channel is 

UDC(8) = IBD12 = 
c 

i23)(L) 
2 

(ziK,)'l (2L + 1)e PL(COS e) 

L 

The Legendre polynomial PL is provided by subroutine LP. The quantity BD is 
the well known Coulomb scattering xnplitude 

i2UD(0) -iTD ln sin' i 
-e 

BD = rlDe 

2 sin' $ 

The program prints out u,(Q), uDc(B), and uD(f3)/uDc(Q). In a similar way the 
same quantities for the outgoing channel are calculated and are printed out. 
The calculation ends at this point. 

Subroutine SZ - Surface Form Factor 

Subroutine SZ calculates the function 

AAT = VORS[aS(2 + X + X-l)1 
-1 

where 
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x = exp[(r - RS)/aS] 

r = ne + 0.5(n - n 2 + In - n21k 

Subroutine AJH - Spherical Bessel or Hankel Function 

Subroutine AJH calculates the spherical Bessel functions of imaginary argu- 
ment j,(ix) or the spherical Rankel functions of the first kind of imaginary 
argument hL(ti). The first step of the calculation is the evaluation of 

j,(ix) = (ex - emx)(2x>" 

ij,(ix) = 
C 

(1 - x)ex - (1 + x)e -y2x2) -'3 

or 

ho(i.x) = -esx(x)-' 

ihl(ix) = -(l + x)esX(x2) 
-1 

Then the higher order functions are generated by the recursion relation 

i~z,(ix) = 2zx- ' iz-lzz-l(ix) + iz-2z2-2(ix) 

where 

zz = j, or hZ 

AJH is also called upon to calculate x2 and x-'-l. 

Subroutine ONE Z - Bound-State Wave Function 

Subroutine ONE Z calculates bound-state solutions of the Schroedinger equa- 
tion for a particle moving in a potential well of the form V(r) = V,(r) - VR.F(r). 
The term Vc(r) is the Coulomb potential due to a uniform sphere of charge: 

VC(r) = 'NczIR; 'Nje 

lr2 
2-G 0 

r < RR 

r > RR 

30 

. .._.__ -... .__ 



F(r) = (1 + exp[(r - R~)/BE]}-~ 

For the form factor F(r) there are the following three choices: 

ND = 1 

L 
l- $ 

2 

0 N 

0 

r < RN 

r > RN 

0 2 
= 1- 2 

% 

1, ND = 2 

ND =,3 

There is also a spin-orbit term available when ND = 1. This addition to F(r) 
has the form 

AZ?? * i $ -$ F(r) Cs 1 
where A, is the pion Compton wavelength. 

The Schroedinger equation to be solved is 

+ V(r) 1 
where L = 2 or T1. Near the origin, q is represented by the series 

Xf = rwlC Cnrn 
n=O 

where 

co = [(2L + 1)(2L - 1)(2L - 3). . . 3 l 11-l 

C2 = -ACo/(4L + 6) 

C, = -(BCnm4 + ACnm2)/n(n + 2L + 1) 

A= 2Mm F (VN - EB) - F 
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B = J.&/g 

= !b& 2MINVN 
fi N 

S2B2 

ND = 1 

ND = 2,3 

Near r = RO, xz is represented by e 
-56 . The solution is started from the 

values of X F given by the power series near the origin, and the values of XE 
at larger values of r are generated by the approximate recurrence relation 

XE(r + 6) = 
Ll-2 - 10 q(r)]<(r) - q(r - E)<(r - 6) 

s(r + 6) 

In this way (r) is evaluated in the interval 0 < r < %s where % is RN1 
Or RN2- The symbol RM is called the matching radius. The same recurrence 
relation is used to evaluate g(r) 'in the interval s < r < R. by using 

.-KNr to give starting values at r = Ro. The ratio of the wave functions at 
the two points RM and RM + 6 is compared for the solution calculated for 
r < RM (inside) and for r > RM (outside). If the difference is not less than 

10 'N3 , the value of VN is changed and the calculation of wave function is re- 
peated in the region where the potential is not negligible. 

The first value of VN used by the program is provided by the input data. 
If the input value of VN Is zero, an estimate of VN till be provided by func- 
tion subprogram VBEST. The value provided by VBEST will be the correct value of 
VN if ND=3. 

The number of nodes in the inside wave function is counted, and, if it does 
not match the bound-state radial quantum number, VN Is incremented by 52 DVN 
until the correct number of nodes is obtained. If the inside and the outside 
wave-function ratios fail to match, VN is successively incremented until the 
difference in the inside and the outside wave-function ratio changes sign. Then 
subroutine IRTRP is used to calculate a new value of VN by interpolation from 
the previous two values of VN. The value of e is again calculated out from 

r = 0 and in from a radius beyond which the potential is less than 10 -N9 of its 
value at for 
repeated), 

r=s( ND = 2 or 3 only the inside wave-function calculation is 
and the inside and outside wave-function ratios are again compared at 

r= 
" -N 

The process is repeated until the difference of the wave-function ratios 

falls below 10 3. 

When a function is produced that has the correct number of nodes and 
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is smooth at r = RM, the integral 

s 

RO 

1T 1 
2 

I= dr Xc(r) 

0 

is evaluated. The bound-state wave function is then taken to be 

Z(r) = I-lJ2XE(r)r-' 

The calculated potential depths VN1 and VN2 are printed out. If IWZ f 0, 
the initial and the final nuclear form factors, Fl and F2, and the initial and 
final wave functions, Xl and X2, will also be printed out. 

Subroutine TWO PD - Kinetic Energy 

Subroutine TWO PD calculates the kinetic energy to be used in the calcula- 
tion of the continuum radial wave functions carried out by subroutine TWO AR. 
The quantities evaluated for the incident channel calculation are 

W(n) = 0 

VC(n) = &- *2 (Kg _ F)j 

a2 
V(n) = 12 VDf (r) 

I 

$2 2MlD 
W(n) = - 12 - 

Ti2 
wDf(r> + X$(r) 1 ED < r < SD 

VC(n) = g (Kg _ ?!+) 
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A2 
V(n) = $ Kg - r2 2MID 'I& 2-3 -- 

( ) RD % 3i2 

W(n) = - $ A2 3 [WDf(r) + XDg(rj 

VC(n> = $ (K2 _ ?$h.) 

where 

r = ne D + 0.5(n - n2 + In - n2j)eD 

2 = ED n 7 n2 

= 2eD n > n2 

f(r) = P l+ exp [ (' iDEDj-' 

=P r ' PD 

The corresponding expressions for the outgoing channel result when the subscripts 
I and D that appear in the previous equations are replaced by F and P, and 
when V, W, and VC are replaced by VA, WA, and VCA. 

Subroutine TWO AB - Radial Wave Function 

Subroutine TWO AB calculates the radial wave functions for the incident and 
the outgoing channels. The expressions appropriate to the incident channel will 
be given. The radial wave functions are solutions to 

+ 12 (v + iw) - 
e2 

For L >, %D, these solutions are approximated by the Coulomb radial wave func- 
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tions that are solutions to 

L(L + 1) xi = 0 
r2 

The quantities V, W, and VC are the kinetic energies provided by program 2VD. 
Also, 

= 26D n > n2 

r = ncD + 0.5(n - n2 + In - n21 )cD 

In the interval 0 < r < N LE D 
0 D' a power series is used to represent XL: 

XE = CLDrL+' 
c 

cp ra a, 

a=0 

where 

c 3mCLD 
LD - L(2L + 1) - 

For L < LDD, 

cp = cc -[da + 2L + lH-loo’pa. 2 + h2cPm4) 

ho = < - 3KD7&l - f (VD + iWD)f(r) - ?!!$ iXDg(r) 

h, = I(DqDE;3 

For L> - %lDJ 

(PO = 1 vl = vDKD(L + 1)-l 

cpo, = -[G + 2L + lrl 2KJgD’pa4 
> 
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Only the first three terms of the power series are used, except at the last two 
points of the interval where N terms are taken. For L < LDDJ N is the small- 
est integer for which 

-N6 10 > 
rN( jRe(PNI + b(i$Jl) 

N N 
Re 

c 
'para + ti Cqara 

0 0 

For L > LDD, N is the smallest integer for which 

-N 
10 6> I T\T I 

Using the two accurate 

to use the following scheme 

I” 
I I c cpara 

0 

values of XD at L r = NoLeD the 

to calculate subsequent values of 

Xy(r + 8) = 
[12 - 10 q(r)lXT(r) - q(r - S)Xi(r 

q(r + 8) 

where 

fj2 L(L + 1) 
q(r) = 1 - 12 r 

$ 
- z 

e 

This scheme is based on the 
order term neglected to get 

Taylor's series expansion of g at r. The lowest 
the previous formula is 

program proceeds 

Xg: 

- 6) 

(V + iW) 

s6[240 q(r + s)]-'L X",(r) 
dr6 

This scheme is begun at r = NOLeD rather than at the origin in order to avoid . 
the point where q(r) vanishes. At this point round-off errors seriously affect 
the accuracy of the scheme. For this reason NO should be greater than l/3. 
The value No = 1 has been found to serve well. Choosing No too large will 
impair the accuracy of the power series. 

Subroutine THREE B - Coulomb Scattering Amplitudes 

Subroutine TRREE B calculates the Coulomb phase shifts uA(L), A = D,P. 
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The Coulomb phase shift is defined by 

‘AcL) = arg l?(L + 1 + iqA) 

For sufficiently high values of L, Stirling's approximation can be used to eval- 
uate the F-function. Thus, 

UA(L) = (L+ 0.5)p + VA In CL - TJA - w 

+ sin 36 _ sin 5p + sin 7P - 0.00084175 sin '6 + . . . 
360 a3 1260 a5 1680 CL7 2 

where 

P = tan"[q/(L + l)] 

CL = (L + 1>2 + 7; 
[ 1 l/2 

The previous expression is used to evaluate crA(50). Then the Coulomb phase 
shifts for lower L are generated by the recurrence relation 

“A’L - /T \ 1) = uA(L) - tan-'(qAIy, 

Subroutine TRREE A - Nuclear Scattering Amplitudes 

Subroutine THREE A first calculates yL(KA,r) at 

r = s = n2eA + (no - n2)2eA and at r = Rt - 2eA, where A = D,P. The func- 

tion yL(KA,r) is the Coulomb analog of the spherical Hankel function of the 
first kind. The following asymptotic expansion is used to evaluate yL: 

ie 
YL($, r) p + 

c 

P, 

n=O 

where 

PO = 1 

h”p, - L - l+ n)(i'lA + L + n)Pn-, 
Pn = 

n(2wAr) 
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The series is terminated after N + 1 terms, where N is the smallest integer 
for which 

-N2 10 > 
be PNI 

be $ P,I + b $ P,I 

and . 

-N2 10 > 
1 zmprJi 

I- f P,I + b 5 Pnl 
0 0 

or N=NlO. If N = Nl0, a statement that the asymptotic series has failed to 
converge is printed out. 

The normalization factor 
mined from the equations 

and the scattering amplitude 4 are deter- 

@X +A& = -Y; aL 0 

+5 + A3l = -Y; 

where 

x1 = x$g - 2EA) 

Thus, 
* 

ylyo 
* 

- yoyl 

xoyl 
-XY 

10 
* * 

AA = '1'0 - '0'1 
L xlyo - xoyl 

The nuclear scattering amplitude is then taken to be 

4 = A; - qii2+) 1 
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Subroutine FOUR - Radial Integral 

Program 4 multiplies together the bound-state kernel Z and the outgoing 
channel radial wave function XP 

L' 
Subroutine FOUR then multiplies the incident 

channel wave function XT by the product ZXE to form 

F(n) = z(rn)<,(rp)x~(rD) 

where 

rM = neM + 0.5(n - n2 + In - n21)eM 

M = N,P,D 

The following sum is then evaluated: 

SO 
L, -l 

= ; F(1) + F [F(l) + 3F(2) + 3F(3) + 2F(4) + 3F(5) + 3F(6) 

+ 2F(7) + . . . + 3F(n2 - 2) + 3F(n2 - 1) + F(n2)] 

+ % e[F(n2) + 3F(n2 + 1) + 3F(n2 + 2) + 2F(n2 + 3) + . . . 

+ 3F(n0 - 1) + 2F(no)l 

This sum represents the integral 

s 

RO 
S 

L,2 = dr Z(rN)$(rp)X!f(rD) 
0 

where 

r = ne + 0.5(n - n + In - n2/)e 
2 

R. = n2e + (no - n2)2e 

It is based on the 3/8's rule 

/ 

B 
dr F(r) = g ELF(a) + 3F(A + 6) + 3F(A + 26) 

A 

+ 2F(A + 36) + . . . + 3F(B - S) + F(B)] 
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Subroutine FOUR uses a similar procedure to evaluate the integral 

C J RO 

sL,2 = dr z(rN)x:bp)xf(r,) 
I 

RC 

where 

Rh = nCe + 0.5(nC - n2 + InC - n21)e 

Subroutine LP - Associated Legendre Polynomials 

The associated Legendre polynomial is generated from 

pWl(x) by the recursion relation 

+d and 

pML(x) = (2L - (L - 1 + M)$I 
L-2 L _ M 

The equations used for # Ff+l are and 

2 M/2 
p$x) = @M)! f”O - x > 

M! 

and 

Pfjml(x) = (2M + l)x#(x) 

Subroutine GAMMA - The Gamma Coefficient 

The gamma coefficient is defined by 

yzm = (2L + 1)(2J+ + 1) (L~oojL~zo)(L~(3j~2m) 0 - I4 )! J-‘2 
LA 21 + 1 

c I ~(L 

Substituting explicit expressions for the vector addition coefficients gives 
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2+ ml > 
) [41 

l/2 
rg = (-l)G+L(2L + 1)(2A -I- 1) "!i; ; PI)! 

! 
; 

Id 

.t: lp$J$ (-l)t(2G ; ,,>h2,; q(t") 

L- z+t 
t 

t 

where 

G=;(L+A+Z) 

I 
a -&.b)!b! 

The previous expression is used to evaluate the gamma coefficient, and use is 
made of function subprogram FCIXG. 

Subroutine PI0T - Plot Graph 

Subroutine PLOT uses subroutine PLOTMY to produce a graphical print-out of 
the calculated direct-reaction cross sections together with the experimental 
cross section included in the input data. If YL = 0, the cross section will be 
plotted, while YL = 1 will cause the logarithm of the cross section to be plot- 
ted. Before being plotted, the cross sections are normalized so that the maximum 
values are 1. The vertical scale of the plot will be Ys/20 to one line space 
if YL = 1, and it will be Ys/lOO if YL = 0. It has been found that Ys = 2 
is a convenient choice for most cases. The information entered on input card 22 
is used as a heading to identify the plot. 

Function Subprogram FCTRL - Factorial Function 

Subprogram FCl%L evaluates the function 

zNzN N 

FCTRL(JN,DN,NN,JD'DD,ND,J) = 
12 * * ' 'NN 

ZDZD 12" 

where 
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zi = JN(M)[JN(M) - DNl[JN(M) - 2D,3 . , . [Jo _ JD~] 

and 

+ = JD(M)[JD(M) - DDIIJD(M) - 2DD1 . . . [JD(M) - mDl 

The JN that appears in the argument of FCTRL represents an array of NN num- 
bers: JN(l), JN(2), . . ., and JN(NN). Similarly, JD represents an array of 

ND 
nmbers: JD(l), JD(2), . . ., and JD(ND). The numbers NN and ND must 

be no greater than 10. The factorial function subprogram is used by subroutine 
GlWDlA. 

Function Subprogram VBEST - Bound-State Potential Depth 

The function subprogram VBEST calculates the exact depth V, of the har- 
monic oscillator potential. This calculation is based on the following consid- 
erations. The Schroedinger equation.for the bound particle is 

which can be rewritten to read 

where n = 1,2, . . . . Thus, it can be required that 

m = MIN 

The first approximation is given by 

x3 = 
f(Xl)X2 - f(X2)X1 

f(xl) - f(x2) 

and the second approxIma.tion is given by 

x4 = 
BfG 

2A 

where 
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A= 
c Ci 
i=l 

3 
B= 

c CdXj + xk) 

i=l 

i, j,k cyclic 

C= 'iXjXk i, j,k cyclic 

ci = f(Xi)(Xj - 5) i,j,k cyclic 

If f(x) were a straight line, A = 0, B = 0, and x4 would be indetermi- 
nate. For an arbitrary regular function f(x), if an attempt were made to fit a 
parabola through three points very near the exact root, the quantities A and B 
would be very close to zero. Thus, parabolic interpolation cannot be used after 
a certain degree of accuracy has been attained. 

From the last two equations 

where 

A= 
2n + L - + 

BN 

The value of VN is calculated from the previous expression. For Saxon wells 
the value VN = 55 Mev is used. 

Subroutine IIWXP - Interpolation 

The subroutine INTRP is designed to solve for the roots of a function 
f(x). Points on the curve f(x) against x are to be computed at intervals by 
the calling program until a zero is passed. Suppose the points x1, f(xl) and 
x2, f(x2) straddle the zero. This information is placed at the disposal of 
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IRTRP by two successive statements. IIVTRP then calculates a straight line join- 
ing these points. The zero of the line, denoted by x3, is taken to be the first 
approximation to the root. The calling program then calculates f(x3). Control 
is then returned to INTRP, which fits a parabola to points 1, 2, and 3. The zero 
of the parabola nearest x3 is taken to be the second approximation x4. 

Subroutine IRTRP computes successive approximations x, to the root of 
f(x) by parabolic interpolation until the quantity A is 10m4 of its original 
value. IRTRP then switches back to linear interpolation. The search for im- 
proved approximations continues until the calling program is satisfied with the 
accuracy of the result. 
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National Aeronautics and Space Administration 

Cleveland, Ohio, November 29, 1963 
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